Welcome to P K Kelkar Library, Online Public Access Catalogue (OPAC)

Normal view MARC view ISBD view

Quantum radar

By: Lanzagorta, Marco.
Material type: materialTypeLabelBookSeries: Synthesis digital library of engineering and computer science: ; Synthesis lectures on quantum computing: # 5.Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool, c2012Description: 1 electronic text (xv, 121 p.) : ill., digital file.ISBN: 9781608458271 (electronic bk.).Subject(s): Radar | Quantum theory | Quantum electrodynamics | radar | quantum radar | quantum information | quantum sensors | quantum electrodynamics | quantum optics | classical electrodynamics | radar cross sectionsDDC classification: 621.3848 Online resources: Abstract with links to resource Also available in print.
Contents:
Preface -- Acknowledgments --
1. Introduction -- 1.1 The need for improved radar systems -- 1.2 From quantum information to quantum sensors -- 1.3 Quantum radar technology -- 1.4 The quantum radar research community -- 1.5 Summary --
2. The photon -- 2.1 Maxwell equations -- 2.2 Electromagnetic quantum fields -- 2.3 The photon -- 2.4 Photon interactions -- 2.5 The classical limit -- 2.6 Photon localization -- 2.7 Photon detection -- 2.8 The photon wave function -- 2.9 Propagation in attenuating media -- 2.9.1 Attenuation of classical light -- 2.9.2 Attenuation of quantum light -- 2.10 Summary --
3. Photon scattering -- 3.1 Physical properties of the specular reflection of light -- 3.2 Atom-photon scattering -- 3.2.1 The transition amplitude -- 3.2.2 The scattering cross section -- 3.2.3 The scattering tensor -- 3.2.4 Frequency invariance -- 3.2.5 Quartic frequency dependence -- 3.3 Mirror-photon scattering -- 3.3.1 Young's double slit experiment -- 3.3.2 Young's double scatterer experiment -- 3.3.3 Young's multiple scatterer experiment -- 3.3.4 Specular reflection as a scattering process -- 3.3.5 The classical path of the photon -- 3.4 Further developments -- 3.4.1 Good reflectors -- 3.4.2 The size of the mirror -- 3.4.3 Inter-atomic distances -- 3.4.4 Number of photons -- 3.5 Summary --
4. Classical radar theory -- 4.1 The radar equation -- 4.2 Maximum detection range -- 4.3 Radar jamming -- 4.4 The radar cross section -- 4.5 Scattering regimes -- 4.6 The radar X-band -- 4.7 Scattering mechanisms -- 4.8 Specular and end-region returns -- 4.8.1 Spherical target -- 4.8.2 Rectangular target -- 4.8.3 Geometry, frequency, and sidelobes -- 4.9 Energy conservation in the optical regime -- 4.10 Radar as an information channel -- 4.11 Summary --
5. Quantum radar theory -- 5.1 Standoff quantum sensors -- 5.1.1 The fundamental limits of quantum metrology -- 5.1.2 Classification of standoff quantum sensors -- 5.1.3 Single-photon quantum radar -- 5.1.4 Entangled-photons quantum radar -- 5.1.5 Quantum LADAR -- 5.2 Interferometric quantum radar -- 5.2.1 Quantum interferometry -- 5.2.2 Attenuated quantum interferometry -- 5.2.3 Separable states -- 5.2.4 Atmospheric quantum interferometry -- 5.2.5 Adaptive optics correction -- 5.3 Quantum illumination -- 5.3.1 Non-entangled photons -- 5.3.2 Entangled photons -- 5.3.3 Sensitivity comparison -- 5.3.4 Gaussian states -- 5.3.5 Entangled measurements -- 5.4 Quantum radar jamming -- 5.5 Physical realization of a quantum radar -- 5.5.1 Transmitter -- 5.5.2 Receiver -- 5.6 Summary --
6. Quantum radar cross section -- 6.1 Desired features of [theta]Q -- 6.2 Incident and scattered quantum fields -- 6.3 Operational definition of [theta]Q -- 6.4 The quantum radar equation -- 6.5 Simulation of [theta]Q for rectangular targets -- 6.5.1 Analytical expression -- 6.5.2 Sidelobe structure -- 6.5.3 [theta]Q vs. [theta]C -- 6.5.4 Target's geometry -- 6.5.5 Range independence -- 6.5.6 Small size targets -- 6.5.7 High frequency photons -- 6.5.8 Atomic structure -- 6.5.9 Multiple photons -- 6.6 Summary --
7. Conclusions -- 7.1 Open questions -- 7.2 The bottom line -- Bibliography -- Author's biography.
Abstract: This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming. This book assumes the reader is familiar with the basic principles of non-relativistic quantum mechanics, special relativity, and classical electrodynamics. Our discussion of quantum electrodynamics and its application to quantum radar is brief, but all the relevant equations are presented in the text. In addition, the reader is not required to have any specialized knowledge on classical radar theory.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
E books E books PK Kelkar Library, IIT Kanpur
Available EBKE378
Total holds: 0

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader.

Part of: Synthesis digital library of engineering and computer science.

Series from website.

Includes bibliographical references (p. 113-120).

Preface -- Acknowledgments --

1. Introduction -- 1.1 The need for improved radar systems -- 1.2 From quantum information to quantum sensors -- 1.3 Quantum radar technology -- 1.4 The quantum radar research community -- 1.5 Summary --

2. The photon -- 2.1 Maxwell equations -- 2.2 Electromagnetic quantum fields -- 2.3 The photon -- 2.4 Photon interactions -- 2.5 The classical limit -- 2.6 Photon localization -- 2.7 Photon detection -- 2.8 The photon wave function -- 2.9 Propagation in attenuating media -- 2.9.1 Attenuation of classical light -- 2.9.2 Attenuation of quantum light -- 2.10 Summary --

3. Photon scattering -- 3.1 Physical properties of the specular reflection of light -- 3.2 Atom-photon scattering -- 3.2.1 The transition amplitude -- 3.2.2 The scattering cross section -- 3.2.3 The scattering tensor -- 3.2.4 Frequency invariance -- 3.2.5 Quartic frequency dependence -- 3.3 Mirror-photon scattering -- 3.3.1 Young's double slit experiment -- 3.3.2 Young's double scatterer experiment -- 3.3.3 Young's multiple scatterer experiment -- 3.3.4 Specular reflection as a scattering process -- 3.3.5 The classical path of the photon -- 3.4 Further developments -- 3.4.1 Good reflectors -- 3.4.2 The size of the mirror -- 3.4.3 Inter-atomic distances -- 3.4.4 Number of photons -- 3.5 Summary --

4. Classical radar theory -- 4.1 The radar equation -- 4.2 Maximum detection range -- 4.3 Radar jamming -- 4.4 The radar cross section -- 4.5 Scattering regimes -- 4.6 The radar X-band -- 4.7 Scattering mechanisms -- 4.8 Specular and end-region returns -- 4.8.1 Spherical target -- 4.8.2 Rectangular target -- 4.8.3 Geometry, frequency, and sidelobes -- 4.9 Energy conservation in the optical regime -- 4.10 Radar as an information channel -- 4.11 Summary --

5. Quantum radar theory -- 5.1 Standoff quantum sensors -- 5.1.1 The fundamental limits of quantum metrology -- 5.1.2 Classification of standoff quantum sensors -- 5.1.3 Single-photon quantum radar -- 5.1.4 Entangled-photons quantum radar -- 5.1.5 Quantum LADAR -- 5.2 Interferometric quantum radar -- 5.2.1 Quantum interferometry -- 5.2.2 Attenuated quantum interferometry -- 5.2.3 Separable states -- 5.2.4 Atmospheric quantum interferometry -- 5.2.5 Adaptive optics correction -- 5.3 Quantum illumination -- 5.3.1 Non-entangled photons -- 5.3.2 Entangled photons -- 5.3.3 Sensitivity comparison -- 5.3.4 Gaussian states -- 5.3.5 Entangled measurements -- 5.4 Quantum radar jamming -- 5.5 Physical realization of a quantum radar -- 5.5.1 Transmitter -- 5.5.2 Receiver -- 5.6 Summary --

6. Quantum radar cross section -- 6.1 Desired features of [theta]Q -- 6.2 Incident and scattered quantum fields -- 6.3 Operational definition of [theta]Q -- 6.4 The quantum radar equation -- 6.5 Simulation of [theta]Q for rectangular targets -- 6.5.1 Analytical expression -- 6.5.2 Sidelobe structure -- 6.5.3 [theta]Q vs. [theta]C -- 6.5.4 Target's geometry -- 6.5.5 Range independence -- 6.5.6 Small size targets -- 6.5.7 High frequency photons -- 6.5.8 Atomic structure -- 6.5.9 Multiple photons -- 6.6 Summary --

7. Conclusions -- 7.1 Open questions -- 7.2 The bottom line -- Bibliography -- Author's biography.

Abstract freely available; full-text restricted to subscribers or individual document purchasers.

Compendex

INSPEC

Google scholar

Google book search

This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming. This book assumes the reader is familiar with the basic principles of non-relativistic quantum mechanics, special relativity, and classical electrodynamics. Our discussion of quantum electrodynamics and its application to quantum radar is brief, but all the relevant equations are presented in the text. In addition, the reader is not required to have any specialized knowledge on classical radar theory.

Also available in print.

Title from PDF t.p. (viewed on November 19, 2011).

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha